Chapter 1

Winter School 2013: Basic
Information Theory

Contents
1.1 Notation . . . . . v v v v i e e e e e e e e e e e 1
1.1.1  Convention of €, and d(€) . . . . . . . ..o 2
1.2 Entropy and Mutual Information . . . . . . . ... ... ... 000, 2
121 Entropy . . . . . . . 2
1.2.2  Mutual Information . . . . .. .. .o 3
1.3 Typical Sequences . . . . . .« i v i i i i it e e e e e e e e e e e e e e e e e e 4
1.4 Jointly Typical Sequences . . . . . . . . i i i v vt vttt ottt et 6
1.4.1 Useful Picture . . . . . . . . . . e 7
1.4.2 Another Useful Picture . . . . . . .. . . .. .. ... 7
1.5 Channel Coding Theorem . . . . . . . . ¢ v i i v vt ittt ittt oo e 8
1.5.1 Channel Coding . . . . . . . . . . . e 8
1.5.2 Channel Coding Theorem . . . . . . . . . .. . .. .. i 9
1.5.3 Sketch of Achievability Proof . . . . . . . .. ... ... ... 9
1.5.4 Proof of Achievability . . . . . . . . . . .. 9
1.5.5  Proof of Weak Converse . . . . . . . . . . . . . 11
1.5.6 References . . . . . . . . . . e 11

1.1 Notation

e Upper case X, Y, ... refer to random variables

Script X, Y, ... refer to discrete sets (alphabets)

|A| is the cardinality of a discrete set A

|A| is the determinant of the matrix A
e X" = (X1,Xo,...,X,) is an n-sequence/vector of random variables
° Xij = (X;, Xit1,...,Xj),j > i. By convention we take Xij to be the trivial random variable if j < 1.

e P(A) denotes the probability of an event A

These notes are a modification of the lecture notes by Prof. Abbas El Gamal(Stanford) and Prof. Young-Han Kim(UCSD)
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e X" ~ p(z™): Probability mass function (pmf) of the random vector X™ is p(z™)
p(z™, y™): Joint pmf of X™ and Y
p(y™|z™): Conditional pmf of Y given X"

e Lower case z,y,... and ™, y", ... refer to scalars/vectors
e Ex (9(X)), or E(g(X)) in short, denotes the expected value of g(X)

e X =Y — Z form a Markov chain if p(x,y, z) = p(x)p(y|z)p(z|y)
X1 — X5 — X3 — -+ form a Markov chain if p(z;|2°~1) = p(z;]|zi-1)

e X ~ Bern(p) denotes that the binary random variable X is distributed according to the Bernoulli
distribution with parameter p, i.e.,

¥ _ 1, with probability p
B 0, with probability 1 — p

X™ ~ Bern(p) denotes the binary random n-vector with X; i.i.d. ~ Bern(p)

e [1: M] denotes the set {1,2,..., M} for an integer M; more generally [1 : 2"%] denotes {1,2,..., [2"*]|}
where |2 denotes the integral part of the real number 2"# (for channel coding problems, we use [-]
instead of |-])

e 0-log0O =0 by convention

(Recall: lim,_,o zlogz = 0)

1.1.1 Convention of ¢, and §(e)

e We often use {¢,} to denote a sequence of nonnegative numbers that approaches zero as n — oo

e When there are multiple sequences {e1,}, {€an}, .., {€xn} — 0, we denote them all by a generic
{en} — 0 with implicit understanding that ¢, = max{en, ..., €xn}

e Similarly, 6(e) denotes a generic function of € such that §(e) — 0 as e — 0
(Example: §(e) = elog(L))

1.2 Entropy and Mutual Information

1.2.1 Entropy

e Entropy of a discrete random variable X ~ p(z):

H(X) ==Y p(z)logp(x) = — Ex (log p(X))

o H(X) is nonnegative, continuous, and strictly concave function of p(x)

o H(X) < log|¥|
This (as well as many other information theoretic inequalities) follows by Jensen’s inequality:
If g is a convex function, then

E(9(X)) > g (E(X))
o Binary entropy function: For 0 <p <1

H(p) = —plogp — (1 — p) log(1 — p)
H(0) = H(1) =0
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e Conditional entropy: Let (X,Y) ~ p(z,y)

H(Y|X) =) p@)H(Y|X =2) = —Exy (logp(Y|X))
rcX

o HY|X) < H(Y), with equality iff X and Y are independent
e Joint entropy for random variables (X,Y) ~ p(z,y):

H(X,Y)=—-E(logp(X,Y))
= —E(logp(X)) — E (logp(Y|X)) = H(X) + H(Y|X)
= —E(logp(Y)) — E (log p(X[Y)) = H(Y) + H(X[Y)

o H(X,Y) < H(X)+ H(Y), with equality iff X and Y are independent
e Let X be a discrete random variable and g(X) be a function of X. Then
H(g(X)) < H(X)

with equality iff g is one-to-one over the support of X, i.e., {x € X' : p(z) > 0}
Proof:

= H(X)+ H(g(X)|X) = H(X) +0=H(X)
= H(g(X)) + H(X|g(X)) > H(g(X))

(
with equality iff H(X|g(X)) =0 or X can be determined from g(X)
and P, = P{X # Y}, then

(why?).
e Fano’s inequality: If (X,Y) ~ p(z,y)
H(X|Y)< H(P.)+ P.log(]X] —1) <1+ P, log(|X]| - 1)

Proof: Let the random variable E be defined as follows.

s Jo x=v
1 X£Y

H(X|Y) < H(X,E|Y) = HE|Y) + HX|E,Y)
< H(E)+P(E =1)H(X|E =1,Y) (why?)
< 1+Pelog(|X| - 1)

e Chain rule for entropies: Let X™ be a discrete random vector. Then

H(X")=H(X1)+ H(X2|X1)+ -+ HXp|Xpn-1,..., X1)

n

= ZH(XHXFM o X1)
i—1

=Y H(X;|X')
i—1

1.2.2 Mutual Information

e For discrete random variables (X,Y") ~ p(x, y):

S S o tog 2
16V = 2 2 ple e o)
= H(X) - HX|Y) = H(Y) — H(Y|X)

A nonnegative function of p(x,y), concave in p(z) for fixed p(y|z), and convex in p(y|z) for fixed p(z)
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Conditional mutual information:

I(X:Y|Z)=H(X|Z)- HX|Y,Z)=H(Y|Z) - HY|X, Z)

Note that no general inequality relation exists between I(X;Y|Z) and I(X;Y)

Two important special cases:

o If Z— X — Y form a Markov chain, then I(X;Y|Z) < I(X;Y)
o If p(z,y, 2) = p(2)p(x)p(y|x, 2), then I(X;Y|Z) 2 I(X;Y)

Chain rule:

I(X™Y) =) I(XsY|X"™)
i=1

Data processing inequality: If X — Y — Z form a Markov chain, then I(X;2) < I(Y; Z)
Proof: I(X;72) < I(X,Y;Z2)=1(Y;Z).

1.3 Typical Sequences

e For a sequence 2" € X", we define its empirical distribution 7 (-|z™) (often called its type) by

|{i:x; =a}

n

m(ala™) = forall a € X

T,, - number of types for x™
T, = number of ways you can have non-negative integers a1, ..., ajx| so that ), a; = n.

Therefore T,, < (n + 1)!*1.

e Question: Suppose you have 2"% sequences 2", then prove that there is at least one type that has
27(=€) of these sequences (for large n).?

Solution: Let N be the maximum number of sequences of any one type. Then clearly,

NT, >2"% = N(n+1)I* > 2nk,

Therefore N > gn(R—1HLeea(nt) > 2n(E=¢) (for large n).

e Let X1, Xy, ... be iid. ~px(x). For each a € X with px(a) >0
m(a|X"™) = px(a) in probability

This is a consequence of the (weak) law of large numbers (LLN)

Thus most likely the random empirical distribution 7(-|X™) does not deviate much from the true
distribution px(+)

logn

Let {e,} be any sequence that satisfies: €, — 0, \/ne,, — oo. (Example set €, = N )

e A limit theorem (proof: follows from Chebyshev’s ineq.)

Let X, Xs,... be i.i.d. ~ px(z). For each a € X with px(a) >0

P (|7T(a|X”) —px(a)| > ean(a)) — 0.
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e The above theorem implies for any fixed € > 0 we have

P (In(alX™) = px(a)] > epx(a)) = 0.

Consider a sequence {e,} satisfying €, — 0 and /ne, — oc.
e Typical set: For X ~ px(z), define the set Te(n)(X) of typical sequences z" as
T (X) == {z" : |x(a|z") — px(a)| < €, - px(a) for all a € X}
When it is clear from the context, we will use T instead of TE(")(X )
e For each 2" € T\ (and n large enough)

27n(1+5n)H(X) < p(xn) < 2771(175")H(X)

Notation: p(z™) = 9—n(l+e,)H(X)

Proof: Note that p(z™) = [[, px (a)"™(@l"),

27n(1+5n)H(X) _ HPX (a)npx(a)(lJrén) < pr (a)nw(a|x")

= HPX(G)"pX(“)(l_En) — 9—n(l—e)H(X)

e By summing the lower bound over the typical set, we have
|T€(n)} < 2n(1+5n)H(X)
o If X1, X,,... are i.i.d. ~ p(x), then by the LLN P{X” € TE(")} — 1. Thus from the upper bound,

7] > (1 = 2"~ ) for n sufficiently large

X’n.
T (X)
P(T{) > 1€

‘Te(n) ‘ S 2n(1+5n)H(X)
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1.4 Jointly Typical Sequences
As before, consider a sequence {¢,} such that ¢, — 0 and /ne, — oo.

e Let (X,Y) ~ p(x,y). The set TE(")(X7 Y) (or T in short) of jointly typical sequences (z™,y™) is

defined as:
T = {(z",y") : |7(a,blz™, y") — p(a,b)| < e, - p(a,b) for all a € X,b e Y}
where | b
m(a,blz™, y") = [{i: (zi,9:) = (a,0)}]
n

—~

is the empirical distribution of (27, y™). In other words, T\™ (X, V) = T™((X,Y))

o

o If (2, y") € T (X,Y), then

1. 2" e TI(X) and y™ € TSV (Y)

2. p(z™,y") = 9—n(lten)H(X,Y)

3. p(a™) = 2-n(1Ee)HX) qnd p(yn) = 2-n(Ee)HY)

4. p(am|y™) = 2 (EVHXIY) and p(yn|an) = 2-nA£)H(Y]X)
Proof:

nw(a,bla",y™)

n|,ny _ pE"y") _ H(ayb)p(a,b)
p(a"|y") = (™) o) p(b)"(Za 7@l y™)

Therefore
2—n(1+en)H(X,Y) I 2—n(1—en)H(X,Y)
(- ) H(Y) <p(a"ly") < o—n(ite)H(Y)
Thus, we obtain (for n large enough)

2—n(l+€)H(X|Y) < p(xn|yn) < 2—77,(1—6)H(X|Y)'

(n should be large enough so that €, (H(X,Y)+ H(Y)) < eH(X]|Y) holds.)

Remark: Check to see that everything is fine even when H(X|Y) = 0.

As in the single random variable case,
1. |TE(")(X, Y)| < on(l+en) H(X,Y)
2. [T (X, V)| > (1 — €)2n(0=en) HXY) for  sufficiently large

Let T (Y] := {y" : (z",y") € T\ (X,Y)}. Then

T (Y]2")| < 2n(HaHEIX) for all z" € T (X)

Let a" € T™ (X) and let Y™ be drawn according to p(y™|2") = [[;—, p(yi|z;). Then by the LLN
P{(z",Y") e T'"(X,Y)} =1 asn— oo
This implies that

T (Y ]2™)| > (1 — )2 9HEIX) for all 2" € T\ (X)

Observe that

(1— 6)211(1—6)H(Y\X) < |Té(n)(y|xn)| < on(1+e H(Y|X) for all 2" € Te(n)(X)
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e Given (X,Y) ~ p(z,y), let (X", Y") be drawn i.i.d. ~ p(z)p(y); in other words, X and Y are from the
product distribution with same marginals as X and Y respectively. Then, for n sufficiently large

1. P{(X", V") e T™(X,Y)} < (11

) o n(I(X:iY)5(0)
— €

2. P{(X™, V") e T(™(X,Y)} > (1 — e)2 U XY)F0()
where §(¢) = e(H(X,Y)+ H(X)+ H(Y))

(XY) Sointly typical pairs when we

2 H(Y) typical sequences.

e Intuition: We are determining the probability of picking one of 2"
pick " uniformly from 2"7(X) typical sequences and 4" independently from

e For " € TE(")(X) if Y™ is drawn i.i.d. p(y), then for n sufficiently large

L P{@E",Y") e T"(X,Y)} < (1 ! )2n<1<x:,y>6<e>>
— €
2. P{(z",Y") € T"(X,Y)} > (1 — €)2 "I (X;¥)+0()
where 6(€) = e(H(X,Y) + H(X) + H(Y))

e Intuition: We are determining the probability of picking one of 2"H(IX) sequences when we pick
uniformly and randomly from 277 () sequences.

1.4.1 Useful Picture

T(X) (|- =200)

&
Y\ 2eeteseieseteeiosniosniosefeseieseioce
e
T (Y) : ‘///‘//>€€(. |) (j(ég;(xy))
(1-1=2m0) N 3
DEDEEBN

T (Y [2) 7" (X |y
(| < 2n<1+e>H(Y\X>) O < 2n<1+e>H<xwY>)

1.4.2 Another Useful Picture

XTL n "
T(X) Y (V)

Te(n) (Y|z")
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1.5 Channel Coding Theorem
1.5.1 Channel Coding

e Point-to-point communication system model:

M Xn yn M

| Encoder »| Channel Decoder | 5

\

Message Estimate

e We assume a discrete memoryless channel (DMC), denoted by (X, p(y|z),)), consisting of two finite
sets X, Y, and a collection of conditional pmfs p(y|z)

e The n-th extension of the discrete memoryless channel is the channel (X", p(y™|z™), V™), where
plyla’,y' ™) =p(yile:),  i=12,....n

e For a channel with no feedback, i.e., p(z;|z*~1, v~ 1) = p(x;|2*~1), we have

n

py"|2") = [ [ plvile:)

i=1
Proof:

pa")p(y"|=") = p(a",y") = [ [ pi vila ",y )
[

[IpGila=" v pila’, vt = T [ plila " p(yilz:)
1

= p(a") Hp(yilwi)-

e A (2" n) code for the channel (X, p(y|x),)), where R is the rate in bits/transmission, consists of the
following:
1. A message set [2"%] = {1,2,..., [2"F]}

2. An encoding function 2" : [2"%] — X" that assigns a codeword x"(m) to each message m € [2"F].
The set {z"(1),...,2"(2"%)} is called the codebook

3. A decoding function m : Y" — [2"7] U {e} that assigns either an index 7 € [2"f] or an error
index e to each received vector y™

e Probability of error: Let A, = P{M # m|M = m} be the conditional probability of error given that
message m was sent

The average probability of error P™ for a (2%, n) code is defined as

2nR

Pe(n) _ 27nR Z A
m=1

which corresponds to P{M # M} when M is uniformly distributed over [2"%].

Important: We assume throughout that the message M is a uniform random variable. ( The assumption
is quite general: If message is not uniform, then it does not have full entropy and we can compress the
message sequence into another which is almost uniform.)

e A rate R is said to be achicvable if there exists a sequence of (2", n) codes such that P 50 as
n — 0o

e The capacity C of a discrete memoryless channel is the supremum of all achievable rates
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1.5.2 Channel Coding Theorem
e Theorem (Shannon [1]): The capacity of the DMC (X, p(y|z),)) is given by

C=maxI[(X;Y)

p(x)

e Examples:

o Binary symmetric channel (BSC) with crossover probability p: C =1 — H(p)
o Binary erasure channel (BEC) with erasure probability p: C =1 —p

e To prove the theorem we need to prove:

o Achievability: Any rate R < C is achievable, i.e., there exists a sequence of (2", n) codes with
average probability of error Pe(") — 0

o Weak converse: Given any sequence of (2"%,n) codes with Pe(n) =0, R<C

1.5.3 Sketch of Achievability Proof
e Let p(x) be the optimal pmf. Consider a codebook of 2" randomly chosen e-typical ™ codewords

e How many such codewords can be distiguished by the receiver?

) (x)

o There are ~ 2"1(Y1X) equally likely 3™ sequences for each =™ sequence
o The total number of likely 4™ sequences is ~ 2"H ()

o Therefore, the maximum number of distinguishable ™ sequences is ~ 2"H(Y)/2”H(Y‘X) = nI(X.Y)
2nC

1.5.4 Proof of Achievability

e Random codebook generation (random coding): Fix p(z). Generate a codebook C consisting of 2"
iid. 2" sequences according to p(z") =[]\, p(x;). Label them z™(m), m € [1 : 2"F]. So

nft

p© = ] [Tp:m))

m=1i=1
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The chosen codebook C is revealed to both sender and receiver before any transmission takes place
Encoding: To send a message m € [2"], transmit z"(m)

Decoding: Let y™ be the received sequence

The receiver declares that a message was sent if there exists one and only one index 1 € [2"%] such
that (z™ (1), y") € T™; otherwise an error is declared

Probability of error: Assuming m is sent, there is a decoding error if (z™(m),y™) ¢ T or if there is

an index m’ # m such that (z™(m'),y™) € T

Consider the probability of error averaged over M and over all codebooks

P(E) = pC)PM(C)
C
= p(C)27" > A(C)
C m=1

2nR

=27 3 3 p(OA(0)

m=1 C

= 3" p(O)M(C) = PEIM = 1)
C

Define the events
Ep ={(X"(m),Y") € TM}, me 2"
Hence

P(EIM =1)=P(E{fUEy; UE5U...U FEgur)

2nR

<P(Ef)+ Y P(En)

Since (X™(1),Y™) is i.i.d. ~ p(x,y), P(EY) < e, for n sufficiently large
Since for m # 1 X™(m) is independent of X" (1), Y™ and X™(m) are independent

Thus, the probability that (X™(m),Y™) is jointly typical is < 2-U(X3Y)=0(0) " where §(e) — 0 as
€ — 0, and

277,1?.

P(e) et Y 27 nUXY)=8(E)

m=2

—e+ (2nR _ 1) 2—n(I(X;Y)—6(e))
< e 4 9 I(X3Y)—R=6(e))
< 2e,

provided that n is sufficiently large and R < I(X;Y") — d(¢)

To complete the proof, note that since the probability of error averaged over the codebooks P(E) < 2e,
there must exist at least one codebook with Pe(n) < 2e¢

Probabilistic method. Simple and elegant

Shannon’s original arguments. Later made rigorous by Forney and Cover
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e Alternative proofs

o Feinstein’s maximal coding theorem

o Gallager’s random coding exponent
e Remarks:

o The capacity for the mazimal probability of error \* = max,, A\, is equal to that for the average
probability of error Pe(n). This can be shown by throwing away the worst half of the codewords.
In particular, the maximal probability of error for the remaining codewords should be < 2Pe(n).
As we shall see, this is not always the case for multiple user channels

o It can be shown (e.g., see [2]), that the probability of error decays exponentially in n. Close to
tight bounds exist on the optimal error exponent (called the reliability function)

1.5.5 Proof of Weak Converse

e We need to show that for any sequence of (2"3, n) codes with Pe(") —0,R<C

Each (2"%,n) code induces the joint pmf

n

(M, X", Y™) ~ p(m,a",y") = 27" Fp(a"|m) [ | p(yilx:)
=1

By Fano’s inequality R
H(M|M) <1+ P™nR =: ne,,

where €, — 0 as n — oo by the assumption that Pe(n) —0

From the data processing inequality,
H(M[Y™) < H(M|M) < ne,
e Now consider
nR=H(M)
=I(M;Y™)+ HM|Y™)
<I(X™Y"™) + ney
=HY")— HY"X")+ ne,

=H(Y") =Y H(Y;|X;) + ney
i=1

<Y HY;) = > H(Yi|X;) + ney

1 i=1

n n

Dividing by n, we obtain R < C' + ¢,
Now letting n — oo, we have €, — 0 and hence R < C
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